Reason for failing to stop ‘Flame’ and ‘Stuxnet’ viruses

A couple of days ago, I received an e-mail from Iran. It was sent by an analyst from the Iranian Computer Emergency Response Team, and it was informing me about a piece of malware their team had found infecting a variety of Iranian computers. This turned out to be Flame: the malware that has now been front-page news worldwide.

When we went digging through our archive for related samples of malware, we were surprised to find that we already had samples of Flame, dating back to 2010 and 2011, that we were unaware we possessed. They had come through automated reporting mechanisms, but had never been flagged by the system as something we should examine closely. Researchers at other antivirus firms have found evidence that they received samples of the malware even earlier than this, indicating that the malware was older than 2010.

internet-security-flame-fluxnet-virus

What this means is that all of us had missed detecting this malware for two years, or more. That’s a spectacular failure for our company, and for the antivirus industry in general.

It wasn’t the first time this has happened, either. Stuxnet went undetected for more than a year after it was unleashed in the wild, and was only discovered after an antivirus firm in Belarus was called in to look at machines in Iran that were having problems. When researchers dug back through their archives for anything similar to Stuxnet, they found that a zero-day exploit that was used in Stuxnet had been used before with another piece of malware, but had never been noticed at the time. A related malware called DuQu also went undetected by antivirus firms for over a year.

Stuxnet, Duqu and Flame are not normal, everyday malware, of course. All three of them were most likely developed by a Western intelligence agency as part of covert operations that weren’t meant to be discovered. The fact that the malware evaded detection proves how well the attackers did their job. In the case of Stuxnet and DuQu, they used digitally signed components to make their malware appear to be trustworthy applications. And instead of trying to protect their code with custom packers and obfuscation engines — which might have drawn suspicion to them — they hid in plain sight. In the case of Flame, the attackers used SQLite, SSH, SSL and LUA libraries that made the code look more like a business database system than a piece of malware.

Click here to read complete article…

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s